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Numerical determination of Regge poles in potential scattering 

M S STERNI6 and A E A WARBURTONS 

$ Department of Applied Mathematics, University of Hull, Hull, UK 
Centre for Computer Studies, University of Hull, Hull, UK 

MS received 22 November 1971 

Abstract. Regge poles of local interactions with a l /r singularity at the origin are determined 
from a polynomial equation which can be solved extremely rapidly on a computer. This 
equation is found to be particularly suitable for locating the poles at negative energies, but 
impractical at positive energies. A simple formula is derived for the residue at a pole. 

1. Introduction 

In nonrelativistic potential scattering Regge poles are generalized bound states and 
resonances in the complex orbital angular momentum plane (Regge 1960, Moorhouse 
1964, Alpharo and Regge 1965, Collins and Squires 1968). A physical bound state 
occurs whenever a Regge trajectory passes through an integer point along the positive 
real axis (including the origin) at negative energies whereas a resonance occurs if Re I 
becomes equal to a positive definite integer (with IIm I1 << 1) at positive energies. 

Section 2 contains a summary of relevant results obtained in a previous paper 
(Warburton and Stern 1969) which forms the basis for the work described in this paper. 
These earlier results are concerned with the eigenvalues and eigenfunctions of the 
Lippmann-Schwinger kernel for local interactions V ( r )  which can be expanded as a 
power series about r = 0, with a l/r singularity at the origin. In $ 3  Regge poles of 
various Yukawa potentials are determined by solving a polynomial equation. This 
equation is found to be particularly suitable for locating the poles at negative energies. 
Section 4 contains the derivation of a simple formula for the residue at a pole. A high 
energy limit for the residue is also deduced. A knowledge of the residues at various 
Regge poles is useful for evaluating the Ieading terms in an expansion for the scattering 
amplitude (Moorhouse 1964, pp 223-58, Aly and Narayanaswamy 1969). 

2. Previous results 

This section summarizes the relevant results obtained in a previous paper (Warburton 
and Stern 1969) concerning the eigenvalues ~ ( k ,  1) of the Lippmann-Schwinger kernel, 
the corresponding wavefunctions ul(r), and the offshell partial-wave T matrix 
T,(p:,  p i  ; k2) where k 2  is the energy in the centre of mass frame. 
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The q(k, 1) are determined from the partial-wave Schrodinger equation 

which is subject to the boundary conditions 

uI(r) - r ' + l  as r + 0 

ul(r) - exp(ikr) as r -+ x 

where we take Im k 2 0, corresponding to the k2 plane cut along the positive real axis. 
By setting 

K = i k  z = -2Kr  U(r)  = -$rV(r )  

and 

ul(r) = r'+ exp(ikr)X(z) 

equation (2.1) is transformed to 

K ~ ( z x " ( z )  + (21 + 2 - z)x'(z) - ( I  + I)x(z)} = U (2.5) 

By substituting the expansions 

(2.6) 

into equation (2.5) and equating coefficients of zJK-"  we obtain 

" 

By applying the condition (Warburton 1966) 

Fn,j = Oforj  > n + N - 1  ( N = 1 , 2 , 3  , . . .  ; n = 0 , 1 , 2  , . . . )  (2.8) 

equation (2.7) yields a system of coupled recurrence relations which enable all the 
Fn,j and clj (n, j = 0 , 1 , 2 , 3 , .  . . ) to be computed for orbital angular momentum 1 and 
order of eigenvalue N (  = 1 ,2 ,3 , .  . . ). We thus speak of the Nth eigenvalue qN(k, I ) ,  
and for this 

- U0 a0 = __ 
N + l  

which yields the Coulomb high energy limit 

(2.10) 
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The asymptotic expansion for qN(k, I )  given in (2.6) is useful only at  high energies. 
However, bearing in mind the high energy behaviour (2.10) and the low energy require- 
ment that ~ ~ ( 0 ,  I )  be finite, this expansion can be summed at low energies by the use of 
an [n, n -  13 Pad6 approximant (Baker 1965) 

(2.1 1 )  

( K  = ik) in which it is convenient to adopt the arbitrary normalization 

qo = 1. (2.12) 

The remaining coefficients of the polynomials in (2.11) are found by matching the 
right hand side to the first 2n terms of the asymptotic expansion for qN. For example, 
the [l, 01 approximant is 

"0 

2U1(N+ 1)'- Uo(N + I)ik' qN(k' I )  (2.13) 

The poles of the S matrix and T matrix are determined by the condition (Weinberg 

V d k ,  I) = 1. (2.14) 

1963) 

A bound state occurs if this equation has a pure imaginary root 

k = iw (0 > 0) (2.15) 

giving the binding energy w2. For a given 1 there is one bound state for each eigenvalue 
which is not less than 1 at zero energy. By substituting (2.11) into (2.14) we obtain the 
polynomial equation 

n -  1 

1 ( q m  -pm)Km + qnK" = 0. 
m = O  

So a bound state at  k = iw (w > 0) satisfies 
n - 1  c (- l ) m + " ( q ,  - pm)wm + qnwn = 0. 
m = O  

(2.16) 

(2.17) 

Computer calculations have shown that if a given potential V(r)  forms a bound state 
for a particular I and N then convergence to the bound state root occurs very rapidly. 
The remaining (n - 1) roots of equation (2.17) normally lie on the negative imaginary 
k axis, that is, on the cut in the complex k plane. 

For the [ l ,  01 Pade approximant (2.13) the solution of (2.17) is 

U: - 2(N + 1)2 U ,  
w =  

(N+I)UO 
(2.18) 

which provides us with a rough check as to whether a local interaction with a nonzero 
U. forms a bound state. 

The offshell partial-wave amplitude can be represented by the separable expansion 

(2.19) 
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in which 

~ , ( p ,  k )  = - jo. r.ilbr)V(r)ul(r) dr 

D N ( k )  = - V(r)u:(r) dr Jbr 
where j,(pr) is a spherical Bessel function of order 1. On the energy shell 

sin 6, 
?;(k2, kZ ; k 2 )  = exp(i6,) ~ 

k 

(2.20) 

(2.21) 

where 6, is the phase shift with orbital angular momentum 1. We have shown that at 
high energies the functions G , ( p , k )  and D,(k) can be represented by the asymptotic 
expansions 

G,(p, k )  = 2(2p)'l!UoK-zci+1J 1 g n ( p 2 ) K - "  

and 
I 

D,(k) = 2(21+ 1)!UO(2K)-z('+" 1 dnK-" 
n = O  

(2.22) 

(2.23) 

( K  = ik) where, in general, the coefficients gz , (p2 )  and gznt1(p2) are polynomials of 
degree n in p z .  At low energies these expansions can be summed by the use of the 
[n + 21 + 2, n] Pad6 approximants 

and 

(2.24) 

(2.25) 

in view of the high energy limits G , ( p , k )  - K2"+" and D,(k) - K - 2 " L " .  The 
polynomial coefficients in (2.24) and (2.25) are determined by the same method as 
that used to compute the coefficients in (2.1 1). 

In the following sections the results outlined above will be employed to compute 
Regge poles and the residues at the poles for local interactions V(r) which can be 
expanded as a power series about r = 0, with a l /r  singularity at the origin. 

3. Polynomial equation for Regge poles 

The work summarized in the previous section was carried out for physical values of 
1 (=  0, 1,2,3, .  . .). We now analytically continue 1 into the complex orbital angular 
momentum plane by using equation (2.14) to obtain Regge poles [ (k ) .  In this case 
equation (2.16) becomes a polynomial equation in 1 whose solution is of the form 

l ( k )  = - N + f ( k )  [ N  = 1,2 ,3 , .  . . 3 (3.1) 

wheref(k) is a function of k and of the parameters belonging to the interaction V(r). 
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For example, the [l, 01 Pade approximant (2.13) yields the quadratic equation 

2U1(N+I)2-U0ik(N+l)-Ug = 0 

which has the roots 

I(k) = - N +  - {ik+(8Ul-k2)1i2}. (z1) 
At zero energy we have 

I(0) = -Nf u0(2u1)-1'z 
which gives values that are fairly close to the zero energy results which Lovelace and 
Masson (1962) calculated for attractive potentials by using high order continued 
fractions. 

According to equation (3.2), branch points occur at 

k2  8U1.  (3.4) 

This formula is a good approximation to the branch points obtained by numerical, 
integration of the partial-wave Schrodinger equation (2.1) when qN(k, I )  = 1 (Warburton 
1964 and 1965). At negative energies the values of the Regge poles computed from equa- 
tion (3.2) are in good agreement with those obtained by Lovelace and Masson (1962) from 
high order continued fractions. However, at positive energies, the accuracy of the 
solution (3.2) decreases as the strength of the interaction increases. 

In passing, we note that equations (2.10) and (2.14) give the exact Regge pole 

iA 
2k 

I(k) = - N - -  (3.5) 

for the Coulomb potential V ( r )  = A/r .  
At high energies the roots (3.2) may be rewritten in the form 

where K = ik. If the minus sign is taken in front of the bracket then this asymptotic 
expansion agrees to second order in K with that given by Lovelace and Masson. 

In principle, when high order Pade approximants are employed in equation (2.16), 
the latter should lead to results which are more accurate than those obtained from 
Lovelace and Masson's (1962) continued fraction method. However, when the degree 
of equation (2.16) is greater than one it is extremely difficult to compute l(k), but on 
the other hand, it is much easier to use this equation to determine k as a function of I 
when the latter is restricted to the real axis in the orbital angular momentum plane. 
Thus, the polynomial equation (2.16) is suitable for tracing Regge trajectories at negative 
energies. These energies are of interest in the t channel for the scattering amplitude 
A(s,t) where s and t are the usual Mandelstam variables (Moorhouse 1964, pp3-12 
and pp 229-33). However, the use of Regge poles derived in potential theory to describe 
such high energy scattering is of doubtful value. For the [1,0] approximant (2.13) 
the solution of (2.16) is 

k =i($- 2(N + I ) -  (3.7) 
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in which the expression enclosed by the large brackets must be positive for I to be a 
Regge pole (because, as mentioned in the previous section, the cut in the k plane lies 
on the negative imaginary axis). 

When (3.7) is used to compute the Regge poles of the repulsive Yukawa potentia1 
V(r) = 2exp(-r)/r. which has also been studied by Warburton (1964 and 1965) and 
Abbe (1967), the correct behaviour of each pole is obtained on one side of its branch 
point only. The incorrect section of each trajectory runs from the branch point to 
1 = - x. The exact analytic behaviour of the poles should be approached as the 
degree of equation (2.16) is increased. In principle high order Pade approximants 
should yield the analytic continuation of the (2N - 1)th pole into the 2Nth pole, where 
N = 1.2.3. .  . . . According to the results presented in tables 1 and 2 it does indeed 

Table 1. First and second Regge poles of the potential V ( r )  = 2 exp( - r )  

/ 

-- 1.20 
- 1.40 
- 1.60 
- 1.80 
- 2.00 
- 2.01 
- 2.02 
- 2.03 
- 2.04 

- l k t  

5,1907 
2,8659 
2.1984 
1.946 1 
1.8708 
1.8703 
1,8700 
1,8700 
1,8703 

1 - i k t  

- 2.05 
- 2.06 
- 2.07 
- 2.08 
- 2.09 
- 2.10 
- 2.20 
- 2.30 
- 2.40 

1,8708 
1.8716 
1,8728 
1,8742 
1,8759 
1,8778 
1.9158 
2.0022 
2.1 197 

f Degree of equation (2.16) = 10 for ql(k. 1) = 1 

Table 2. Second Regge pole of the potential V ( r )  = 2 exp( --I) -I 

1 -ikf 1 - 1 k t  

- 2.01 
- 2.02 
- 2.03 
- 2.04 
- 2.05 
- 2.06 
- 2.07 
- 2.08 

100~000 
50.010 
33.348 
25,019 
20.023 
16,694 
14,317 
12.535 

- 2.09 
-2.10 
-2.15 
- 2.20 
- 2.25 
- 2.30 
- 2.35 
- 2.40 

11.150 
10.042 
6.722 
5,063 
4.06 1 
3.376, 1.889 
2444, 2.063 
2,067 

~~~ 

t Degree of equation (2.16) = 10 for q2(k ,  I )  = 1 

appear that the first Regge pole has been continued into the second pole by solving 
the polynomial equation for q l ( k ,  I )  = 1. We note from table 1 that the branch point 
connecting these poles occurs at 1 2 -2.03 with k = 1.87i which is in excellent agree- 
ment with Warburton’s (1964) calculation. It can be seen from table 2 that this branch 
point was not located when equation (2.16) was solved for q2(k,  I )  = 1. The rate of 
convergence of the polynomial equation is displayed in table 3. 

It therefore seems that the polynomial equation (2.16), provided it is of sufficiently 
high degree, can be employed to determine Regge poles, possessing correct analytic 
properties, for local interactions which can be expanded as a power series about r = 0 
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Table 3. Rate of convergence of equation (2.16) for the first and second Regge poles of the 
potential V ( r )  = 2 exp( - r ) / r  

- i k  
I 

n = 2  n = 4  n = 6  n = 8  n = 9  n = l O  

-1.75 1.9869 1,9879 1.9880 1.9880 1.9880 1.9880 
-2.30 1.9124 1.9611 1.9974 2.0011 2.0022 2.0022 

n = degree of equation (2.16) for q,(k, r) = 1. 

with a l/r singularity at the origin. The equation can be solved extremely rapidly on a 
computer. As the degree of the equation is increased from unity to (for example) 10 
it is found that physical roots (ie the roots yielding Regge poles) are stable whilst the 
unphysical roots are generally unstable, the locations and movements of the latter 
normally occurring only on the cut in the complex k plane. 

4. The residue at a Regge pole 

The residue B at the Regge pole I ,  is defined by (Ahmadzadeh 1963) 

p = lim(I-I,)S(k, I )  (4.1) 
1-10 

where k = k, at 1 = 1,. S(k ,  I )  is the partial-wave S matrix. Weinberg (1963) has shown 
that 

at both positive and negative energies. 
As q N ( k O ,  I,) = 1 we can expand qN(k ,  I )  about ( k , ,  I,) as the Taylor series 

which yields 

if we assume that the terms containing higher derivatives can be ignored. If the Mth 
eigenvalue is responsible for the pole, then by substituting (4.2) and (4.4) into (4.1) 
we find that 

When k, is situated on the positive imaginary axis in the k plane its value must be such 
that -k, will be above the cut on the negative imaginary axis to enable this result to 
be employed to calculate the residue. This restriction imposes an upper limit on the 
strength A of the attractive Yukawa potential V(r)  = -Aexp(-p)/r  since the cut 
occupies the region Im k < - p / 2 .  
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We shall now derive another formula for [j which will not involve evaluating 
t i s (  - k o ,  1,). As S(k.  1) = exp(2i6,), equations (2.19) and (2.21) allow the S matrix to be 
expressed in the form 

(4.6) 

If the Nth eigenvalue is responsible for the Regge pole. equations (4.1). (4.4). and (4.6) 
lead to the result 

14.71 

where G,(k , ,  k, )  and D,(k,) are evaluated at 1 = I , .  When this simple formula IS 
applied to the attractibe Yukawa potential Vir )  = - 5 exp( - r)/r. which forms an 
S wave bound state at  k ,  = 1,57471, we find that the residue at the bound state pole is 

= - 5.445 which is in good agreement with the result obtained by Ahmadzadeh (1963). 
We end this section with an investigation of the high energy behaviour of p. The 

expansions (2.22) and (2.23) yield the offshell high energy limit 

which reduces to 

on the energy shell. The Coulomb high energy limit (2.10) gives 

i q s  -iL, 
~ 

i l  ( I + N ) 2 k '  

By substituting (4.9) and (4.10) into (4.7) we obtain the approximation 

( -  16)*+'(1!)2(1+Ar)2 p,v --_____-- 
(21+ l ) !  

and by employing the Coulomb high energy behaviour 

(4.10) 

14.1 I ) 

we find that 

(4.13) 

where T(z) = ( 2 -  l)!. As T(l/z) = zT(1+ l j z )  - z when ( z /  -+ x it is easily seen that 
the high energy limit for the residue is 

(4.14) 2i U ,  
P I  -k 

which agrees exactly with the formula for the Coulomb potential derived by Ahmadzadeh 
(1963). 
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5. Conclusions 

I t  has been shown that the polynomial equation (2.16), which can be solved very rapidly 
on a computer, is particularly suitable for determining Regge poles at negative energies 
for local interactions with a l /r  singularity at the origin. The residue at any pole can 
then be computed from the simple formula (4.7). Approximate values of Regge poles 
at positive or negative energies can be calculated very easily from equation (3.2). An 
estimate of the scattering amplitude A(s, t) can be made from a knowledge of Regge 
poles and the residues at these poles (Moorhouse 1964, pp 223-58, Aly and 
Narayanaswamy 1969). 

It is well known that, for the class of potentials considered in this paper, a plot of 
Re I against energy yields a trajectory which initially rises to a maximum value and 
then falls as the energy increases. However, high energy physics experiments indicate 
that Regge trajectories rise continuously with increasing energy (Mandelstam 1969, 
Squires 1971). Aly and Narayanaswamy (1969) have shown that potentials with a 
l /r4 behaviour yield continuously rising trajectories. It should be possible to study 
Regge poles of local interactions with a l/r" behaviour, where n > 1, by employing the 
finite difference solution of the partial-wave Schrodinger equation (2.1) developed in 
another paper (Stern and Warburton 1972). The finite difference method can deal with 
any local potential but is less efficient than the method described in the preceding 
sections of this paper when calculations are performed with interactions possessing a 
l/r singularity at the origin. This latter class of central potentials (expressed in a 
generalized form by the equations dealing with V ( r )  and U ( r )  in (2.3) and (2.6)) is 
frequently employed to represent interactions in low energy problems (Coester and 
Yen 1963, Mongan 1969). 
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